Вид механической характеристики асинхронного двигателя. Механические характеристики асинхронных двигателей

Механические характеристики асинхронных двигателей могут быть выражены в виде n=f(M) или n =f (I ). Однако часто механические характеристики асинхронных двигателей выражаются в виде зависимости M = f(S), где S - скольжение, S = (nc-n)/nc , где n с - синхронная скорость.

На практике для графического построения механической характеристики пользуются упрощенной формулой, называемой формулой Клосса:

здесь: Мк - критическое (максимальное) значение момента. Этому значению момента отвечает критическое скольжение

где λм = Мк/Мн

Формула Клосса применяется при решении вопросов, связанных с электроприводом, осуществляемым с помощью асинхронного двигателя. Пользуясь формулой Клосса можно построить график механической характеристики по паспортным данным асинхронного двигателя. Для практических расчетов в формуле при определении критического момента перед корнем следует принимать во внимание только знак плюс.


Рис. 1. Асинхронный двигатель: а - принципиальная схема, б - механическая характеристика М=f(S) - естественная в двигательном и генераторном режимах, в - естественная механическая характеристика n=f(М) в двигательном режиме, г - искусственные реостатные механические характеристики, д - механические характеристики для различных напряжений и частот.

Как видно из рис. 1, механическая характеристика асинхронного двигателя располагается в I и III квадрантах. Часть кривой в I квадранте соответствует положительному значению скольжения и характеризует двигательный режим работы асинхронного двигателя, а в III квадранте - генераторный режим. Наибольший практический интерес представляет двигательный режим.

График механической характеристики двигательного режима содержит три характерные точки: А, В, С и условно может быть подразделен на два участка: ОВ и ВС (рис. 1, в).

Точка А соответствует номинальному моменту двигателя и определяется по формуле Мн = 9,55 10 3 (P н/n н)

Этому моменту соответствует , которое для двигателей общепромышленного применения имеет величину в пределах от 1 до 7%, т. е. Sн=1 - 7%. При этом мелкие двигатели имеют большее скольжение, а крупные - меньшее.

Двигатели с повышенным скольжением , предназначенные для работы с ударной нагрузкой, имеют S н~15%. К ним относятся, например, двигатели единой серии АС.

Точка С на характеристике соответствует величине начального вращающего момента , возникающего на валу двигателя при пуске. Этот момент Мп носит название начального, или пускового. Скольжение при этом равно единице, а скорость - нулю. легко определить по данным справочной таблицы, где указывается отношение пускового момента к номинальному Мп/Мн.

Величина пускового момента при постоянных величинах напряжения и частоты тока зависит от активного сопротивления в цепи ротора. При этом вначале с возрастанием активного сопротивления увеличивается величина пускового момента, достигая своего максимума при равенстве активного сопротивления цепи ротора и полного индуктивного сопротивления двигателя. В дальнейшем с возрастанием активного сопротивления ротора величина пускового момента уменьшается, стремясь в пределе к нулю.

Точка В (рис. 1,б и в) соответствует максимальному моменту , который может развивать двигатель на всем диапазоне скоростей от n = 0 до n = n с. Этот момент носит название критического (или опрокидывающего) момента Мк. Критическому моменту соответствует и критическое скольжение Sк. Чем меньше величина критического скольжения Sк, а также величина номинального скольжения S н, тем больше жесткость механической характеристики.

Как пусковой, так и критический моменты определяются через номинальный. Согласно ГОСТ на электрические машины для короткозамкнутого двигателя должно соблюдаться условие Мп/Мн = 0,9 - 1,2, Мк/Мн = 1,65 - 2,5.

Следует иметь в виду, что величина критического момента не зависит от активного сопротивления роторной цепи, в то время как критическое скольжение S к прямо пропорционально этому сопротивлению. Это означает, что с увеличением активного сопротивления роторной цепи величина критического момента остается неизменной, однако максимум кривой момента смещается в сторону возрастающих значений скольжения (рис. 1, г).

Величина критического момента прямо пропорциональна квадрату напряжения, подводимого к статору, и обратно пропорциональна квадрату частоты напряжений и частоты тока в статоре.

Если, например, напряжение, подводимое к двигателю, будет равно 85% номинального значения, то величина критического момента при этом составит 0,85 2 = 0,7225 = 72,25% критического момента при номинальном напряжении.

Обратное явление наблюдается при изменении частоты. Если, например, к двигателю, предназначенному для работы с частотой тока f = 60 гц, подвести ток частотой f = 50 гц, то критический момент получит в (60/50) 2 = 1,44 раза большее значение, чем при своей формальной частоте (рис. 1, д).

Критический момент характеризует собой мгновенную перегрузочную способность двигателя, т. е. он показывает, какую мгновенную (на несколько секунд) перегрузку способен перенести двигатель без каких-либо вредных последствий.

Участок механической характеристики от нулевого до максимального (критического) значения (см. рис. 1 , бив) носит название устойчивой части характеристики , а участок ВС (рис. 1,в) - неустойчивой части .

Объясняется такое деление тем, что на возрастающей части характеристики ОВ с увеличением скольжения, т.е. с уменьшением скорости, растет развиваемый двигателем момент. Это означает, что при увеличении нагрузки, т. е. при возрастании тормозного момента, уменьшается скорость вращения двигателя, а развиваемый им момент увеличивается. При снижении нагрузки, наоборот, скорость возрастает, а момент уменьшается. При изменении нагрузки на всем диапазоне устойчивой части характеристики происходит изменение скорости вращения и момента двигателя.

Двигатель не в состоянии развить момент больше критического, и если тормозной момент окажется больше, двигатель неминуемо должен остановиться. Происходит, как принято говорить, опрокидывание двигателя .

Механическая характеристика при постоянных U и I и отсутствии добавочного сопротивления в цепи ротора называется естественной характеристикой (характеристика короткозамкнутого асинхронного двигателя с фазным ротором без добавочного сопротивления в цепи ротора). Искусственными, или реостатными, характеристиками называются такие, которые соответствуют добавочному сопротивлению в цепи ротора.

Все значения пусковых моментов различны между собой и зависят от активного сопротивления цепи ротора. Одному и тому же номинальному моменту Мн соответствуют скольжения различной величины. С увеличением сопротивления цепи ротора возрастает скольжение и, следовательно, уменьшается скорость вращения двигателя.

Благодаря включению в цепь ротора активного сопротивления механическая характеристика в устойчивой части вытягивается в сторону возрастания скольжения, пропорционально сопротивлению. Это означает, что скорость двигателя начинает сильно меняться в зависимости от нагрузки на валу и характеристика из жесткой делается мягкой.

Анализ работы асинхронного электродвигателя удобно про­водить на основе его механических характеристик, представ­ляющих собой графически выраженную зависимость вида п = f (М ). Скоростными характеристиками в этих случаях пользуются весьма редко, так как для асинхронного электродвига­теля скоростная характеристика представляет собой зависи­мость числа оборотов от тока ротора, при определении которого встречается ряд трудностей, особенно, в случае асинхронных электродвигателей с короткозамкнутым ротором.

Для асинхронных электродвигателей, так же как и для электродвигателей постоянного тока, различают естественные и искусственные механические характеристики. Асинхронный электродвигатель работает на естественной механической ха­рактеристике в том случае, если его статорная обмотка подключена к сети трехфазного тока, напряжение и частота тока которой соответствует номинальным значениям, и если в цепь ротора не включены какие-либо дополнительные сопро­тивления.

На рис. 42 была приведена зависимость М = f (s ), которая позволяет легко перейти к механической характеристике n = f (M ), так как, согласно выражению (82) , от величины скольжения зависит скорость вращения ротора.

Подставив формулу (81) в выражение (91) и решив полу­ченное уравнение относительно п 2 получим следующее уравне­ние механических характеристик асинхронного электродвигателя

Член r 1 s опущен, ввиду его малости. Механические харак­теристики, соответствующие это­му уравнению, приведены на рис. 44.

Для практических построений уравнение (95) неудобно, поэто­му на практике обычно пользу­ются упрощенными уравнениями. Так, в случае работы электродвигателя на естественной ха­рактеристике при вращающем моменте, не превышающем 1,5 его номинального значения, сколь­жение обычно не превышает 0,1. Поэтому для указанного случая в уравнении (95) можно пренебречь членом x 2 s 2 /kr 2 ·M , в результате чего получим следующее упрощенное уравнение естествен­ной характеристики:

являющееся уравнением прямой линии, наклоненной к оси абсцисс.

Хотя уравнение (97) является приближенным, опыт пока­зывает, что при изменениях момента в пределах от М = 0 до М =1,5М н характеристики асинхронных электродвигателей действительно прямолинейны и уравнение (97) дает результа­ты, хорошо согласующиеся с опытными данными.

При введении в цепь ротора дополнительных сопротивлений характеристику п = f (М ) с достаточной для практических це­лей точностью также можно считать прямолинейной в указанных пределах для вращающего момента и производить ее построение по уравнению (97).

Таким образом, механические характеристики асинхронного электродвигателя в диапазоне от М = 0 до М = 1,5 М н при раз­личных сопротивлениях роторной цепи представляют семейство прямых, пересекающихся в одной точке, соответствующей син­хронному числу оборотов (рис. 45). Как показывает уравнение (97), наклон каждой характеристики к оси абсцисс определя­ется величиной активного сопротивления роторной цепи r 2 . Очевидно, чем больше сопротивле­ние, введенное в каждую фазу ро­тора, тем больше наклонена к оси абсцисс характеристика.

Как указывалось, обычно на практике скоростными характери­стиками асинхронных электродвига­телей не пользуются. Расчет же пусковых и регулировочных сопро­тивлений производят с помощью уравнения (97). Построение естест­венной характеристики можно вы­полнить по двум точкам - по синхронной скорости n ­ 1 = 60f /р при ну­левом моменте и по номинальной скорости при номинальном моменте.

Следует иметь в виду, что для асинхронных электродвигателей зависимость момента от тока ротора I 2 носит более слож­ный характер, чем зависимость момента от тока якоря для

электродвигателей постоянного тока. Поэтому скоростная ха­рактеристика асинхронного двигателя неидентична механиче­ской характеристике. Характеристика п = f (I 2 ) имеет вид, показанный на рис. 46. Там же дана характеристика n = f (I 1 ).

38) Механическая характеристика асинхронного двигателя.

Механическая характеристика . Зависимость частоты вращения ротора от нагрузки (вращающегося момента на валу) называется механической характеристикой асинхронного двигателя (рис. 262, а). При номинальной нагрузке частота вращения для различных двигателей обычно составляет 98-92,5 % частоты вращения n 1 (скольжение s ном = 2 – 7,5 %). Чем больше нагрузка, т. е. вращающий момент, который должен развивать двигатель, тем меньше частота вращения ротора. Как показывает кривая

Рис. 262. Механические характеристики асинхронного двигателя: а - естественная; б - при включении пускового реостата

на рис. 262, а, частота вращения асинхронного двигателя лишь незначительно снижается при увеличении нагрузки в диапазоне от нуля до наибольшего ее значения. Поэтому говорят, что такой двигатель обладает жесткой механической характеристикой.

Наибольший вращающий момент M max двигатель развивает при некоторое скольжении s kp , составляющем 10-20%. Отношение M max /M ном определяет перегрузочную способность двигателя, а отношение М п /М ном - его пусковые свойства.

Двигатель может устойчиво работать только при обеспечении саморегулирования, т. е. автоматическом установлении равновесия между приложенным к валу моментом нагрузки М вн и моментом М, развиваемым двигателем. Этому условию соответствует верхняя часть характеристики до достижения M max (до точки В). Если нагрузочный момент М вн превысит момент M max , то двигатель теряет устойчивость и останавливается, при этом по обмоткам машины будет длительно проходить ток в 5-7 раз больше номинального, и они могут сгореть.

При включении в цепь обмоток ротора пускового реостата получаем семейство механических характеристик (рис. 262,б). Характеристика 1 при работе двигателя без пускового реостата называется естественной. Характеристики 2, 3 и 4, получаемые при подключении к обмотке ротора двигателя реостата с сопротивлениями R 1п (кривая 2), R 2п (кривая 3) и R 3п (кривая 4), называют реостатными механическими характеристиками. При включении пускового реостата механическая характеристика становится более мягкой (более крутопадающей), так как увеличивается активное сопротивление цепи ротора R 2 и возрастает s кp . При этом уменьшается пусковой ток. Пусковой момент М п также зависит от R 2 . Можно так подобрать сопротивление реостата, чтобы пусковой момент М п был равен наибольшему М max .

В двигателе с повышенным пусковым моментом естественная механическая характеристика приближается по своей форме к характеристике двигателя с включенным пусковым реостатом. Вращающий момент двигателя с двойной беличьей клеткой равен сумме двух моментов, создаваемых рабочей и пусковой клетками. Поэтому характеристику 1 (рис. 263) можно получить путем суммирования характеристик 2 и 3, создаваемых этими клетками. Пусковой момент М п такого двигателя значительно больше, чем момент М’ п обычного короткозамкнутого двигателя. Механическая характеристика двигателя с глубокими пазами такая же, как и у двигателя с двойной беличьей клеткой.

НА ВСЯКИЙ СЛУЧАЙ РАБОЧУЮ ХАРАКТЕРИСТИКУ!!!

Рабочие характеристики. Рабочими характеристиками асинхронного двигателя называются зависимости частоты вращения n (или скольжения s), момента на валу М 2 , тока статора I 1 коэффициента полезного действия? и cos? 1 , от полезной мощности Р 2 = Р mx при номинальных значениях напряжения U 1 и частоты f 1 (рис. 264). Они строятся только для зоны практической устойчивой работы двигателя, т. е. от скольжения, равного нулю, до скольжения, превышающего номинальное на 10-20%. Частота вращения n с ростом отдаваемой мощности Р 2 изменяется мало, так же как и в механической характеристике; вращающий момент на валу М 2 пропорционален мощности Р 2 , он меньше электромагнитного момента М на значение тормозящего момента М тр, создаваемого силами трения.

Ток статора I 1 , возрастает с увеличением отдаваемой мощности, но при Р 2 = 0 имеется некоторый ток холостого хода I 0 . К. п. д. изменяется примерно так же, как и в трансформаторе, сохраняя достаточно большое значение в сравнительно широком диапазоне нагрузки.

Наибольшее значение к. п. д. для асинхронных двигателей средней и большой мощности составляет 0,75-0,95 (машины большой мощности имеют соответственно больший к. п. д.). Коэффициент мощности cos? 1 асинхронных двигателей средней и большой мощности при полной нагрузке равен 0,7-0,9. Следовательно, они загружают электрические станции и сети значительными реактивными токами (от 70 до 40% номинального тока), что является существенным недостатком этих двигателей.

Рис. 263. Механическая характеристика асинхронного двигателя с повышенным пусковым моментом (с двойной беличьей клеткой)

Рис. 264. Рабочие характеристики асинхронного двигателя

При нагрузках 25-50 % номинальной, которые часто встречаются при эксплуатации различных механизмов, коэффициент мощности уменьшается до неудовлетворительных с энергетической точки зрения значений (0,5-0,75).

При снятии нагрузки с двигателя коэффициент мощности уменьшается до значений 0,25-0,3, поэтому нельзя допускать работу асинхронных двигателей при холостом ходе и значительных недогрузках.

Работа при пониженном напряжении и обрыве одной из фаз. Понижение напряжения сети не оказывает существенного влияния на частоту вращения ротора асинхронного двигателя. Однако в этом случае сильно уменьшается наибольший вращающий момент, который может развить асинхронный двигатель (при понижении напряжения на 30% он уменьшается примерно в 2 раза). Поэтому при значительном падении напряжения двигатель может остановиться, а при низком напряжении - не включиться в работу.

На э. п. с. переменного тока при уменьшении напряжения в контактной сети соответственно уменьшается и напряжение в трехфазной сети, от которой питаются асинхронные двигатели, приводящие во вращение вспомогательные машины (вентиляторы, компрессоры, насосы). Для того чтобы обеспечить нормальную работу асинхронных двигателей при пониженном напряжении (они должны нормально работать при уменьшении напряжения до 0,75U ном), мощность всех двигателей вспомогательных машин на э. п. с. берется примерно в 1,5-1,6 раза большей, чем это необходимо для привода их при номинальном напряжении. Такой запас по мощности необходим также из-за некоторой несимметрии фазных напряжений, так как на э. п. с. асинхронные двигатели питаются не от трехфазного генератора, а от расщепителя фаз. При несимметрии напряжений фазные токи двигателя будут неодинаковы и сдвиг между ними по фазе не будет равен 120°. В результате по одной из фаз будет протекать больший ток, вызывающий увеличенный нагрев обмоток данной фазы. Это заставляет ограничивать нагрузку двигателя по сравнению с работой его при симметричном напряжении. Кроме того, при несимметрии напряжений возникает не круговое, а эллиптическое вращающееся магнитное поле и несколько изменяется форма механической характеристики двигателя. При этом уменьшаются его наибольший и пусковой моменты. Несимметрию напряжений характеризуют коэффициентом несимметрии, который равен среднему относительному (в процентах) отклонению напряжений в отдельных фазах от среднего (симметричного) напряжения. Систему трехфазных напряжений принято считать практически симметричной, если этот коэффициент меньше 5 %.

При обрыве одной из фаз двигатель продолжает работать, но по неповрежденным фазам будут протекать повышенные токи, вызывающие увеличенный нагрев обмоток; такой режим не должен допускаться. Пуск двигателя с оборванной фазой невозможен, так как при этом не создается вращающееся магнитное поле, вследствие чего ротор двигателя не будет вращаться.

Использование асинхронных двигателей для привода вспомогательных машин э. п. с. обеспечивает значительные преимущества по сравнению с двигателями постоянного тока. При уменьшении напряжения в контактной сети частота вращения асинхронных двигателей, а следовательно, и подача компрессоров, вентиляторов, насосов практически не изменяются. В двигателях же постоянного тока частота вращения пропорциональна питающему напряжению, поэтому подача этих машин существенно уменьшается.

Механической характеристикой двигателя называется зависимость частоты вращения ротора от момента на валу n = f (M2). Так как при нагрузке момент холостого хода мал, то M2 ? M и механическая характеристика представляется зависимостью n = f (M). Если учесть взаимосвязь s = (n1 - n) / n1, то механическую характеристику можно получить, представив ее графическую зависимость в координатах n и М (рис.1).

Рис.1.

Естественная механическая характеристика асинхронного двигателя соответствует основной (паспортной) схеме его включения и номинальным параметрам питающего напряжения. Искусственные характеристики получаются, если включены какие-либо дополнительные элементы: резисторы, реакторы, конденсаторы. При питании двигателя не номинальным напряжением характеристики также отличаются от естественной механической характеристики.

Механические характеристики являются очень удобным и полезным инструментом при анализе статических и динамических режимов электропривода.

Данные для расчета механических характеристик для данного привода и двигателя:

Трехфазный асинхронный двигатель с короткозамкнутым ротором питается от сети с напряжением = 380 В при = 50 Гц.

Параметры двигателя 4АМ160S4:

Pн= 12,5 кВт,

nн= 1460 об/мин,

cosцн= 0,86,зн= 0,89,kн= 2,2

Определить: номинальный ток в фазе обмотки статора, число пар полюсов, номинальное скольжение, номинальный момент на валу, критический момент, критическое скольжение и построить механическую характеристику двигателя. Решение.

(3.1) Номинальная мощность, потребляемая из сети:

(3.2) Номинальный ток, потребляемый из сети:

(3.3) Число пар полюсов

где n1 = 1500 - синхронная частота вращения, ближайшая к номинальной частоте nн= 1460 об/мин.

(3.4) Номинальное скольжение:

(3.5) Номинальный момент на валу двигателя:

(3.6) Критический момент

Мк = kм х Мн = 1,5 х 249,5 = 374,25 Нм.

(3.7) Критическое скольжение находим подставив М = Мн, s = sн и Мк / Мн = kм.

Для построения механической характеристики двигателя с помощью n = (n1 - s) определим характерные точки: точка холостого хода s = 0, n = 1500 об/мин, М = 0, точка номинального режима sн = 0,03, nн = 1500 об/мин, Мн = 249.5 Нм и точка критического режима sк = 0,078, Мк =374.25 Нм.

Для точки пускового режима sп = 1, n = 0 находим

По полученным данным строят механическую характеристику двигателя. Для более точного построения механической характеристики следует увеличить число расчетных точек и для заданных скольжений определить моменты и частоту вращения.

Построение естественной механической характеристики двигателя

Механической характеристикой двигателя называется, зависимость частоты вращения n от момента М нагрузки на валу.

Различают естественные и искусственные характеристики электродвигателей.

Естественной механической характеристикой называется - зависимость оборотов двигателя от момента на валу при номинальных условиях работы двигателя в отношении его параметров (номинальные напряжения, частота, сопротивление и тому подобное). Изменение одного или нескольких параметров вызывает соответствующее изменение механической характеристики двигателя. Такая механическая характеристика называется искусственной.

Для построения уравнения механической характеристики асинхронного двигателя воспользуемся формулой Клоса (4.1):

где М k - критический момент двигателя (4.1.1):;

S k - критическое скольжение двигателя (4.1.2);

Перегрузочная способность двигателя (= 3);

S н - номинальное скольжение двигателя (4.1.3):

где n н - скорость вращения ротора;

n 1 - синхронная скорость поля статора (4.1.4);

где f - промышленная частота тока питающей сети, (f = 50 Гц) (4.1.5);

Р - число пар полюсов (для двигателя 4АМ132S4 Р=2)

Номинальное скольжение двигателя 4АМ132S4

Критическое скольжение двигателя

Критический момент двигателя

Для построения характеристики в координатах переходят от скольжения к числу оборотов на основании уравнения

Скольжением задаются в пределах от 0 до 1

S = 0 n = 1500 . (1 - 0) = 1500 об/мин;

Электропривод переменного тока

Классификация электроприводов переменного тока

На базе синхронных двигателей.

а) СД с электромагнитным возбуждением,

б) СД с возбуждением от постоянных магнитов.

Синхронные машины могут работать в трёх режимах: генераторном, двигательном и в режиме синхронного компенсатора.

Наиболее распространённым режимом работы синхронных машин является генераторный режим. На тепловых электростанциях установлены турбогенераторы мощностью 1200 МВт на 3000 об/мин и 1600 МВт на 1500 об/мин. В отличие от быстроходных турбогенераторов, гидрогенераторы - это тихоходные машины, как правило, с вертикальной осью вращения. Для повышения динамической устойчивости энергосистем и повышения качества электроэнергии используются синхронные компенсаторы, выполненные на базе явно- и неявнополюсных синхронных машин.

В режиме двигателя синхронные машины используются в качестве приводных двигателей мощных насосов, вентиляторов, воздуходувок. Предельная мощность синхронных двигателей достигает нескольких сотен мегаватт. Также в различных электроприводах широко используются синхронные микродвигатели, в которых для создания поля возбуждения используются постоянные магниты.

Как правило, синхронные генераторы и двигатели эксплуатируются с cos φ = 0,8 ÷ 0,9.

На базе асинхронных двигателей с КЗ ротором.

а) трёхфазный АД,

б) двухфазный АД.

На базе асинхронных двигателей с фазным ротором.

Асинхронные машины наибольшее распространение получили как двигатели. Предельная мощность асинхронных двигателей - несколько десятков мегаватт. Для насосов и аэродинамических труб выпускаются асинхронные двигатели мощностью до 20 МВт. В индикаторных системах применяются асинхронные двигатели от долей ватт до сотен ватт.

В настоящее время асинхронные двигатели выпускаются едиными сериями. Основная серия асинхронных машин 4А включает в себя двигатели от 0,4 до 400 кВт. Разработана единая серия асинхронных машин АИ, АИР, 5А и RА. Двигатели серии АТД выполняются с короткозамкнутым массивным ротором и водяным охлаждением обмотки статора.

Асинхронные двигатели с короткозамкнутым ротором серии 4А можно разделить на две разновидности по степени защиты и по способу охлаждения. Машины закрытые, защищённые от попадания внутрь неё брызг любого направления и предметов диаметр более 1 мм, имеют внешний обдув вентилятором. По ГОСТ это исполнение имеет обозначение IP44. Второй разновидностью конструкции являются машины с исполнением по степени защиты IP23. В этих машинах обеспечивается защита от возможности соприкосновения предметов диаметром более 12,5 мм с токоведущими вращающимися частями машины. Исполнение IP23 предусматривает защиту от попадания внутрь машины капель, падающих под углом 60° к вертикали (каплезащищённое исполнение).



Отличительной особенностью машин с фазным ротором является наличие на роторе обмотки из проводников круглого или прямоугольного сечения, начала которой выведены на контактные кольца. Узел контактных колец выведен из станины, а контактные кольца закрыты кожухом. Токосъёмный аппарат состоит из щёток и щёткодержателей. Система вентиляции и степень защиты двигателей с фазным ротором - IP23 и IP44.


Уравнение механической характеристики асинхронного двигателя. схема замещения одной фазы.

В отличие от двигателей постоянного тока магнитный поток возбуждения трёхфазного двигателя создаётся переменным током обмоток и является вращающимся. Появление в обмотке ротора ЭДС и тока, а следовательно, и вращающего момента на валу возможно, как известно, только при наличии разности между скоростью вращения поля и скоростью вращения ротора, называемой скольжением



где ω – скорость вращения ротора.

Механические характеристики асинхронного электродвигателя строят в виде зависимости скольжения от развиваемого двигателем момента s=f(M) при постоянной величине напряжения и частоты питающей сети.

Для получения аналитического выражения механической характеристики трёхфазного двигателя используется эквивалентная схема одной фазы двигателя при соединении обмоток статора и ротора в «звезду». На эквивалентной схеме (рисунок 5.2) магнитная связь между обмотками статора и ротора заменена электрической, а ток намагничивания и соответствующие ему индуктивное и активное сопротивления представлены в виде независимого контура, включенного на напряжение сети.

X 0

Рис. 5.1. Эквивалентная схема одной фазы двигателя.

Для данного рисунка

– первичное фазное напряжение;

I 1 – фазный ток статора;

I 2 / – приведённый ток ротора;

Х 1 и Х 2 / – первичное и вторичное приведённое реактивные сопротивления рассеяния;

R 0 и Х 0 – активное и реактивное сопротивления контура намагничивания;

s – скольжение двигателя;

– синхронная угловая скорость двигателя, ;

R 1 и R 2 / – первичное и приведённое вторичное активные сопротивления;

f 1 – частота сети,

р – число пар полюсов.

Параметры обмотки ротора (индуктивное, активное сопротивления и ток ротора I 2 ) приведены к виткам обмотки статора и к режиму при неподвижном роторе. Кроме того, эквивалентная схема рассматривается при условии, что параметры всех цепей являются постоянными, а магнитная цепь ненасыщенной.

В соответствии с приведённой схемой замещения можно получить выражение для вторичного тока:

(5.2)

Вращающий момент асинхронного двигателя может быть определён из выражения потерь

, откуда

(5.3)

Подставляя значение тока I 2 / в это выражение, получим:

(5.4)

Выражение для максимального момента:

(5.5)

Знак «+» относится к двигательному режиму (или торможению противовключением), знак «-» - к генераторному торможению.

Обозначив получим:

(5.6)

M к - максимальный момент (критический момент) двигателя,

s к - критическое скольжение, соответствующее максимальному моменту.

Из формулы 5.5 видно, что при данном скольжении момент двигателя пропорционален квадрату напряжения, поэтому двигатель чувствителен к колебаниям напряжения сети.

На рисунке 5.2 изображены механическая характеристика асинхронного двигателя в различных режимах работы. Характерными точками характеристики являются:

1) - скорость вращения двигателя равна синхронной скорости;

2) - номинальный режим работы двигателя;

3) - критический момент в двигательном режиме;

4) - начальный пусковой момент.

Обозначив кратность максимального момента , получим:

.

При двигатель работает лишь в пусковых и тормозных режимах, это нерабочая часть характеристики (гипербола).

При функция линейна, её графиком является прямая, которая называется рабочей частью механической характеристики асинхронного двигателя. На этом отрезке механической характеристики двигатель работает в установившемся режиме. На этой же части находятся точки, соответствующие номинальным данным двигателя: .


Рис. 5-2. Механическая характеристика асинхронного двигателя.